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E N E R G E T I C  V A R I A N T  OF T H E  M O D E L  OF R H E O L O G I C A L  

D E F O R M A T I O N  A N D  D E S T R U C T I O N  OF M E T A L S  U N D E R  

A J O I N T  A C T I O N  OF STATIC A N D  C Y C L I C  LOADS 

V. P. Radchenko,  E. K. Kichaev,  and A. V.  S imonov UDC 593.376-539.4 

A uniaxial phenomenological energetic model for description of inelastic deformation and de- 
struction of metals under a joint action of static and cyclic loads is proposed. The amplitude 
value of the cyclic component of stress in experiments was less than 10% of static loading. The 
model proposed was carefully verified in experiments with the 1~P742 alloy for T = 650 and 
750~ The numerical and experimental data are in good agreement. 

1. The energetic [1, 2] and adjoining thermodynanfic [3, 4] approaches for description of inelastic 
rheological deformation and destruction of metals under conditions of unsteady loading yield good results, 
and the advisability of using these approaches in computational practice is unquestionable. The goal of the 
present work is to generalize the approach [2] for description of a class of events that occur in a material 
under a joint action of static a0 and cyclic loads with an amplitude value of the cyclic component aa,~. We 
confine ourselves to consideration of the so-called nmlticycle loading at frequency f > 10 Hz and amplitude 
coefficient A = ao/tTao that does not exceed some critical value Act of the order of 0.10-0.15 (in contrast to 
few-cycle loading at frequency f > 10 Hz and the number of cycles needed for destruction less than 104). 
In the case considered, the cyclic load leads to two basic effects [5]: 1) acceleration (or even initiation) of 
the creep process under a given static stress a0; 2) reduction of the accumulated inelastic deformation at 
the moment of destruction as compared to that under purely static loading. This process is called the cyclic 
creep [5] or the vibrocreep (for an amplitude coefficient of 0.01-0.03) [6]. It is usually impossible to describe 
these phenomena within the framework of traditional classical approaches, or phenomenological creep [7], or 
fatigue under an asymmetric cycle [8]. From the analysis of papers on cyclic creep [6, 9-11], the following 
approaches can be conventionally distinguished at the phenomenological level. 

A. Introduction of reduced stress equal to static stress such that the longevity in the static creep 
regime coincides with the longevity in the cyclic creep regime. This approach postulates the similarity of the 
curves of static and cyclic creep, which is one of its drawbacks. In addition, under unsteady loading regimes, 
these theories yield large errors both for the static and cyclic components. 

B. Description of creep under cyclically varying stress. In this case, the behavior of deformation in 
each cycle is considered. The drawback of this approach is the neglect of fatigue-induced damage and the 
absence of the loading frequency in the governing equations. 

C. Phenomenological models based on the hypothesis of additivity of the fatigue-induced damage 
parameters and static creep and on the principle of linear summation of the damages: 
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where v. (a0) is the t ime of destruction due to creep under a given static loading a0 and R(a~ o, f )  is the number 
of cycles prior to destruction for a given amplitude of the cyclic component aao and loading frequency f .  
Experimental  studies show that  relation (1.1) is valid only under sequential loading by static and cyclic loads 
with a moderate  gradient. In the rest of the cases, the values of the expression in the left side of equality 
(1.1) can be significantly greater or smaller than unity. Numerous at tempts  at creating a universal principle 
of nonlinear summation of the damages have not been successful. 

2. The basic model of solving the problem posed in the present paper is the model proposed by 

Radchenko [2] for quasi-static loading: 
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Here r is the total strain, e and e p are the elastic and plastic strains, p is the creep-induced strain, u, v, 

and w are the viscoelastic, viscoplastic, and viscous components of p, a0 and a are the nominal and actual 
stresses, E is the Young modulus, Ak, ak, bk, c, n, m, and a .  are theological constants of the material that  
describe the first and second stages of creep and the reversible part  of the creep deformation, w is the damage 
parameter ,  assumed to be proportional to a linear combination of the work of the actual stress on the creep 
deformation and the work on plastic deformation, and o and 3, are the material parameters that  control the 
loss of strength. We have X = 1 for a(t) > cr(v) (0 <~ "c < t) and X = 0 if it is possible to find a t ime ~- such 

tha t  a(t) ~ a(T). 
In the general case, we have 7 = ~(ep) and a = a(a0),  and we can use a power-taw approximation for 

them [2]: 

"~ ----" - y l ( e P )  m2 , oz = o q  (o '0)  m '  . ( 2 . 4 )  

For a number of materials, in special cases, we have ~ = const and a = const [2]. The  function S(a),  which 

describes the plasticity strain, has the form 

S(~) = a(~ - ~ (2.5) 

where a and n are constants and a+ is the limit of proportionality. 
3. To generalize model (2.1)-(2.5) to the case of a joint action of quasi-cyclic and cyclic loads, we 

introduce one more term related to irreversible processes under cyclic loading into the damage parameter.  
We adopt  a hypothesis that  the fatigue-induced damage during one cycle of loading is proportional to the 
applied elastic work of the actual amplitude stress during one cycle at constant a0, aao, and f .  Then relation 

(2.1) takes the form 

& = 7(eP)a~ p + a(cro)af9 + 91(ao. ~rao. f )  ~ N ,  (3.1) 
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where aa is the actual value of the amplitude stress 

ao = aao(1 + w), (3.2) 

gl (a0, aao, f )  is a function determined experimentally, and N is the number of loading cycles. 
Thus, the complete system of equations for inelastic deformation under a joint action of quasi-static 

and cyclic loads consists of relations (2.1), (2.2), (3.1), and (3.2). 
4. To obtain the destruction criterion, similarly to [2], we use thermodynamic considerations according 

to which the destruction of a material occurs when the density of internal energy reaches a critical value. The 
theoretical and experimental research [12] allows us to assume that  the critical value of the internal-energy 
density is independent of the loading process and is a constant of the materiM. 

The internal energy U+ accumulated in the deformed element is a sum of two components. The first 
component is caused by accumulation of the potential  (accumulated. latent) ener~" U e in the deformed 
volume of the material, and the second part  of the energy is accumulated in the form of heat content U T. 
Thus, based on the principle of energy superposition [13], we obtain 

U+ = V e + U r .  (4.1) 

In accordance with the above-said, the destruction criterion is 

U+(t.) = Uo + Ul(t.) = U.. (4.2) 

where Uo(T) is the initial value of the specific internal energy for t = 0, UI is the increment of the internal 
energy due to deformation, U. is the critical value of the internal ener~,  (a constant, of a material),  and t .  is 
the time before the moment of destruction. The increment AU+ = AU1 during the time At  is composed of 

two parts: 

A u +  : A u  e + ~ x u r ( A u  ~ = ~Aep + ~ A ; ,  a u  ~ = ~xu~ + Aur~ + A u 2 ) .  (4.3) 

In contrast  to [1, 3, 4], the increment of the potential  energy AU e is written here for the actual stress a 
rather than for the nominal stress; the cyclic component an,, affects the strains e p and p through the damage 
parameter  [relations (3.1) and (3.2)]. The  quantities AU1 T, AU f ,  and AU f are the increments of the heat 
content upon formation of plastic deformation, creep deformation, and cyclic loading. The next problem is to 
determine AU T. A direct measurement of this quanti ty (and, moreover, its separation into the components 
AU f )  using calorimetry is a difficult problem even under laboratory conditions at a fixed temperature.  

Therefore, it is necessary to find some other methods for evaluating AU T. 
Some experimental da ta  [12] allow us to adopt the following hypotheses: AU T and AU f are propor- 

tional to aAe p and n a p ,  respectively, and the value of AU f at constant or0, aa., and f during the loading 

cycle is a certain part  of the applied work of the actual amplitude stress during a half-cycle: 
,) 

cr~ (4.4) 

Taking into account (4.4), we transform (4.3) to 

~u~ "~N. (4.5) AU+ = aAeP(1 + aAepAUT ] "~ + n a p ( 1  +--~-~p] + g2(~ro,a~o,T,f) 2E 

Based on the hypotheses adopted and using the notat ion 1 + Ag~/(crAeP) = C(T) and 1 + AuT/(crAp) = 
D(ao, T), we rewrite relation (4.5) as 

AU+ = C(T)aAeP + D(ao, T)aZXp + g2(ao, a,o, T, f) - ~  AN. (4.6) 

After integration of (4.6), using (4.2) we obtain 

t .  t .  t .  

C(T)adeP + D((~o,T)adp+ g2(ao, aao,T.f)-~-~dN= U'(T). (4.7) 

0 0 0 
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Here UI(T) = U, - Uo(T). For a constant temperature T, relation (4.7) can be written as 

t. t. t. 

AP.(T) + + = �9 ~ AC. (no, T) ~ A~(ao, an,,, T, f )  1, ( 4 . 8 )  
0 0 0 

where A, p = U ' ( T ) / C ( T ) ,  A~. = U ' (T) /D(ao ,  T) ,  and A~ = U'(T)/g2(aO, aao ,T , f ) .  In a special case, for 
T = const and f = eonst, relation (4.8) becomes 

t. t. t. fadeP fadp i f  a 2 d N  
4- AC.(ct0------ ~ + ~-~ d.Y(ao, Cta,,) = 1. (4.9) 

0 0 0 

Relation (4.8) or its special case (4.9) is the destruction criterion under a joint action of static and cyclic 
loads. Thus, the rheological model for the phenomenon described consists of the system of equations (2.1), 
(2.2), (3.1), (3.2), and (4.8) or (4.9). 

Relations similar in structure to (4.8) and (4.9) but written for the nominal rather than actual stresses 
were considered for few-cycle fatigue by Romanov [14]. 

5. A technique for determining the parameters of the model proposed is described below. In the 
energetic approach, the following experimental da ta  are used as the basic parameters: 

- -  a diagram of material tension at a constant, rather high strain rate, 
- -  a series of creep curves from the beginning of loading to the moment of destruction (marked by 

crosses in Figs. 1-4) for a0 = const, which are called the steady creep curves. 
- -  a series of creep curves from the beginning of loading to the moment of destruction for a0 = const 

and an(, = const, which are called the steady cyclic creep curves. 
Using the first two basic experiments and the technique described in [2], we determine all the parameters 

of Eqs. (2.1)-(2.5) and also the values of % a, A p, and A.C; the value of A. c is approximated by A. c = a.(cr0) m*. 
To determine gi(a0, Crao) and A,Y(a0, an,,), we use the steady cyclic creep curves. Numerical calculation of 
Eqs. (2.1), (2.2), (3.1), and (3.2) is performed for different values of gl until minimization of the functional 
characterizing the closeness of the calculated and experimental curves of inelastic deformation. The criterion 
of closeness of the calculated and experimental curve is the distance between them in a certain chosen direction 

(0 ~< ~ ~< rr/2) (Fig. 1), and the measure of closeness is the dimensionless functional of the form 

Z L M  {rpCalc| J P-:-- jpeXp]2] / + /[t~alc--t~xP'] 2 } ~  --*rain, (5.1) 

j = l  

t. calc and _calc exp and p~.Xp are the experimental values of time and where _j pj are the calculated values and tj 
inelastic deformation corresponding to the points of intersection of the creep curves with the straight line 
a inclined at an angle ~ to the t axis (Fig. 1), t ,  and p, are the experimental values of time and inelastic 
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T A B L E  1 

T, A~, 
o C h-~ 

650 0.022 
750 0.2 

al bl 

7.32.10 -4 
6.55 - 1 0  - 4  

5.37.10 -~ 
4.804. 1 0  - 3  

C 721 m 

7.22 �9 10 - 7  3.29 184.93 
4.15.10 -5 3.76 . 

O~i~ 
MPa- i -~ l  

3.0- I014 
2.81 �9 10 ~ 

ml 
OL.~ 

MPa- 1 -m. 

174.4 
81.1 

TABLE 2 

T,~  a+ ,MPa 

650 696.3 
750 608.2 

E, MPa 

1.79 - 10 -5 
1.70.10 -~ 

a, MPa-" n 

8.614. 1 0  - 7  1.854 
5.102.10 -~ 1.943 

~/1, MPa -~ A. p, MJ- m/m 3 m2 

1.776.10 -3 
1.623.10 -3 

227.5 
180.0 

T A B L E  3 

T, ~ Gf, MPa -1 .h-l-Hz-1 

650 
750 

a /  n/  A y, MJ �9 m/m 3 a~ ny go:,) 

2.95.10 -5 -0.087 0.532 9.58.10 u -0.122 1.40 49 
2.71 �9 10 -m 0.153 -1.240 4.07- 10 'J -0.168 0.82 49 

deformat ion  corresponding  to the point  of  sample destruct ion,  and /1I is the number  of points  used for 

min imiza t ion  of funct ional  (5.1). 

I n  a special case, cri terion (5.1) includes t radi t ional  methods  for de termining the  closeness of  the curves 

on the  basis of  deformation.  For ~ = ~r/2, we have the  me thod  for de termining the  closeness on the basis of 

de fo rmat ion  and for ~ -- 0 on the basis of  the  t ime of  reaching a given value of inelastic strain. At  the  same 

time, cr i ter ion (5.1) is free of  their  drawbacks.  For example,  the cri terion of  closeness based on deformat ion 

is inappl icable  at the  third  stage, and the closeness based on t ime can yield significant errors for materials  

with a low velocity at  the second stage of  creep. 
De te rmin ing  gl for given ~ao and a0, we cont inue numerical  calculat ions using the model  until  the 

calcula ted inelastic s t ra in  reaches the  exper imenta l  value at  the  momen t  of des t ruc t ion  and find the  value of 

A,  y f rom the  relat ion 

t .  t .  t .  - /  /( /~ / Ay, = 1 cr~f dt 1 -  (5.2) 
2E  A,  p Ac, (a0) ] "  

0 0 0 

After  de termining gl and A,  y for several cons tan t  aao and a0, we cons t ruc t  a two-dimensional  approxi-  

ma t ion  of  these quanti t ies.  An  analysis of  exper imenta l  da t a  shows tha t  we can use the  following expressions 

for approx imat ion :  

gl(aO, aao) = G / e x p  [af ao ]  (aa,___2~nl A Y =  [ cro] (aa___2_o ~ ny. (5.3) 

6.  T h e  validity of the equat ions  proposed  was exper imental ly  verified using the t~P742 mater ia l  for 

T = 650 and  750~ loading frequency f = 50 Hz, and a s ine-shaped cyclic componen t  of  stress. Radchenko 

[2] pe r fo rmed  a detai led verification of Eqs. (2.1)-(2.5) and des t ruct ion cri terion (4.9) under  condit ions of 

quasi-s ta t ic  creep (cyclic componen t  era o = 0) for various regimes of loading a0 for this material .  

T h e  initial in format ion  for de te rmining  the  pa ramete r s  of model  (2.1)-(2.5) and (4.9) were the experi- 

menta l  curves of s teady  creep shown by solid curves in Fig. 1 for T = 650~ and Fig. 2 for T = 750~ where 

e(0) is the  value of  elastic s t rain at  the momen t  of  load applicat ion at t = 0. The  values of  the pa ramete r s  are 

given in Table 1 for creep deformat ion  (a ,  = 490.5 MPa,  K = 1, and m ,  = 0 for b o t h  values of t empera ture )  
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and in Table 2 for plastic deformation. The dashed curves in Figs. 1 and 2 correspond to the calculation 
performed using model (2.1)-(2.5), (4.9). The arrows indicate the beginning of plastic deformation. At this 
time, the actual stress u is greater than the limit of proportionali ty a+ due to damage accumulation, though 

the inequality a0 < G+ was valid at the initial t ime t = 0. 
The  da ta  on cyclic creep of the 1~,P742 alloy for model (2.1), (2.2), (3.1), (3.2), (4.9) calculated using 

the technique described in Sec. 5 are listed in Table 3. As an example, Figs. 3 and 4 show experimental 
(solid curves) and calculated (dashed curves) values of inelastic strain under steady cyclic creep. The  curves 

in Fig. 3 correspond to T = 650~ and a0 = 686.7 MPa, those in Fig. 4 to T -- 750~ and a0 = 569 MPa, 
and the values of the cyclic component aao for each curve are given by numbers. 

Figures 5 and 6 show experimental  (solid curves) and calculated (dashed curves) values of inelastic 
theological strain in a complex unsteady regime for bo th  static and cyclic components  of loading. The  curves 
in Fig. 5 correspond to T = 750~ the quanti ty a0 -= 570 MPa was constant during the experiment,  and 
the cyclic component  was Gao = 0 for t E [0, 10] and Gao = 49 MPa for t ~> 10. Figure 6 (T = 650~ shows 
variation of the components G0 and Ga0 for complex loading p r o ~ a m s  given at the top of the figure. 

The examples presented demonstrate  good agreement between the calculated and experimental  data. 
The  model proposed describes two basic effects of cyclic creep in the region considered [5]: acceleration of the 
creep process and reduction of the accumulated inelastic strain at the moment  of destruction as compared to 

quasi-static creep. 

536 



R E F E R E N C E S  

1. O. V. Sosnin, B. V. Gorev, and A. F. Nikitenko, Energetic Variant of Creep Theory [in Russian], Inst. of 
Hydrodynamics, Sib. Div., USSR Acad. of Sci., Novosibirsk (1986). 

2. V. P. Radchenko, "Energetic variant of uniaxial creep theory and long-term strength," Prikl. Mekh. Tekh. 
Fiz., No. 4, 172-179 (1991). 

3. V. V. Fedorov, "Thermodynamic concepts of strength and destruction of a solid body," Probl. Prochn., 
No. 11, 32-34 (1971). 

4. D. A. Kiyalbaev and A. I. Chudnovskii, "Destruction of deformable bodies," Prikl. Mekh. Tekh. Fiz., 
No. 3, 105-110 (1970). 

5. V. P. Golub, "Some effects of creep under cyclic loading," Probl. Proehn., No. 5, 20-24 (1987). 
6. A. M. Lokoshchenko, E. A. Myakotin, and S. A. Shesterikov, "Effect of small vibrations on creep," Probl. 

Prochn., No. 5, 50-54 (1985). 
7. Yu. N. Rabotnov, Creep Problems in Structural Members, North-Holland, Amsterdam (1969). 
8. V. T. Troshchenko, Fatigue and Inelasticity of Metals [in Russian], Naukova Dumka, Kiev (1971). 
9. G. I. Barenblatt, Yu. I. Kozyrev, N. L. Malinin, et al., "Vibrocreep of polymeric materials," Prikl. Mekh. 

Tekh. Fiz., No. 5, 68-75 (1965). 
10. O. V. Sosnin, B. V. Gorev, and V. V. Rubanov, "Creep of cyclically loaded elements of constructions," 

Probl. Prochn., No. 10, 66-69 (1977). 
11. Ya. I. Tsimbalistyi, I. A. Troyan, and O. I. Marusin, "Vibrocreep of the t~I437B alloy at normal and high 

temperatures," Probl. Prochn., No. 11, 30-35 (1975). 
12. V. V. Fedorov, Kinetics of Damage and Destruction of Solids [in Russian], Fan, Tashkent (1985). 
13. hi. Planck, Principle of Energy Conservation ]Russian translation], GONTI, Moscow-Leningrad (1938). 
14. A. N. Romanov, "Energetic criteria of destruction under few-cycle loading," Probl. Prochn., No. 1, 4-13 

(1974). 

537 


